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Illustrations

Figure 1. Electron (dot-dashed line) and ion densities (H+ dotted, He*
dashed, O™ too small to be seen) at the apex of the L=3 fieldline for equinox,
solar moderate conditions plotted as functions of the logarithm of density
of artificially added neutral species, demonstrating reasonable insensitivity
to that parameter. Panels side-by-side show the same results for different
methods of linearizing the equation of continuity. Rows of panels correspond
to results for 0200LT, 1000LT and 2200LT respectively, read from the top.

Figure 2. A comparison of modeled GTIM O densities with
observed profiles from the Arecibo, Puerto Rico, ISR. The four panels show
comparisons at 1900LT, 2200LT, 0100LT and 0400LT. Observations are
indicated by 25 April 1995 as solid lines, 26 April as dotted lines and 27 April
as dashed lines. Overplots show radar observations made within 15 minutes.
Symbols denote model densities for a 4-day simulation (day 1=plus, day
2=asterisk, day 3=diamond, day 4=triangle).

Figure 3. As in Figure 2, but pertaining to H* densities. The
additional symbols, “G” demonstrate the results of the Gallagher empirical

plasmaspheric model.
Figure 4. As in Figure 2, but pertaining to He™ densities.

Figure 5. Wavelike ionospheric effects in the GTIM when a wavelike E x
B disturbance is applied. This case was made for January, solar maximum,
Huancayo sector conditions, using a 16-day wave and 50% peak-to-peak
amplitude. The relative variation in Nmax at selected latitudes (18=solid
line,-10=dotted,0=dashed,+10=dot-dashed,+18=dot-dot-dot-dashed) is
plotted as a function of the day during the period.

Figure 6. A demonstration of the abilities of the SIMPLI profile model
in radiowave propagation predictions. Here, the solid line indicates the
elevation angle versus transmission frequency for a given circuit obtained
from climatological estimates (electron density contours in the left insert).
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The dotted line shows the same predictions made from the “ground-
truth” jonosphere, shown in the right insert. The three lines above show
the predictions made when Nmax is variously utilized in the propagation

predictions at the circuit mid-point, end-points, and both, when SIMPLI

parameters along the path are shifted only the zeroeth order. The three lines -

lying nearest to the dotted line are made when SIMPLI Nmax are refit along
the whole path.

Figure 7. Comparison of SETA and MSISE90 density variations
averaged over 20-20 degrees latitude at 1030 LT during July 20-26, 1983.

Figure 8. Comparison of ”longitude/UT” variation in SETA densities
(circles) with MSISE90 (dotted line) during the magnetically quiet period of
July 21-23, 1983. Solid line represents least-squares fit of sinusoid to SETA
data.

Figure 9. Comparison of amplitudes of "longitude/UT” variation
between SETA and MSISEQ0 as a function of latitude, for daytime data
during July 21-23, 1983.

Figure 10. Longitude/UT dependence as revealed by SETA (top) and
MSISE90 (bottom) total mass densities at 200 km during July 21-23, 1983.
Left: daytime (1030 LT). Right: nighttime (~2230 LT).

Figure 11. Longitude/UT dependence as revealed in SETA (left) and
MSISE90 (right) daytime (21030 LT) total mass densities at 200 km during
December 5-10, 1983.

Figure 12. Density residuals as a function of latitude and time during

magnetically quiet periods during July, 1983, and December, 1983.

Figure 13. Superposition of spectra in different latitude bands,

corresponding to the density residuals depicted in Figure 12 for July, 1983.
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1. INTRODUCTION

The Phillips Laboratory Global Theoretical Ionospheric Model (hereafter, GTIM)
has formed the basis for a series of investigative studies. First, a multiple ion version of the
theoretical code has been developed that is based on the same numerical solution type, to
help ensure that OF densities are consistent with the one-ion GTIM and that validation
results obtained for the F-region will still be valid. Next, two new applications of the GTIM
have been completed, in the study of wavelike disturbances in low-latitude electric fields and
in a demonstration that the resulting ionospheric effects are also wavelike, and in a study
to determine the F-region peak signatures that could be inferred from in situ measurements
made at DMSP altitudes. Finally, a system for ionospheric raytracing is described that is
based on a simple analytical profile model that can readily absorb real-time information and

whose raytracing specification can be substantially improved with only minimal updates.

Work performed on neutral density studies has concentrated on the delineation
and interpretation of longitudinal structures in the SETA data. These include the

“longitude/UT” effect and longitudinal wave structures.

2. THE MULTIPLE-ION GTIM

One significant effort over this period has been the extension of the Phillips
Laboratory GTIM to the solution of multiple ion species over a significantly greater range

of altitudes. This has involved three major areas of development within the model:

- rewriting the equations of continuity and momentum for more than one ion,

including both ion-ion and ion-electron interactions

- updating physical drivers for the model to permit reliable ion density derivations at

much higher altitudes




- revising and updating reaction rates

The third area of development for the GTIM was principally undertaken at Computational
Physics Inc. (hereafter, CPI) Boston and will not be discussed further in this report. The
other two areas as they were performed at Boston University are discussed in the following

two sections.

2.1 Deriving Ion Densities

The GTIM solution method for a one-ion formulation is described in Anderson (1973).
Essentially, an expression for ion flux derived from the momentum equation is substituted
into the continuity equation. This expanded continuity equation is then finite-differenced,
and the resulting equation, that is tridiagonal in the ion densities (denoted Nj), is solved
numerically along magnetic field lines, from the footpoint at 125 km in one hemisphere to

the conjugate point in the other hemisphere.

We now consider the multiple ion situation. In the first instance, we form an
equivalent expression for ion fluxes from the momentum equation for each of a number of
ions. The momentum equations include terms from each of collisions with other ions (say, j)
and with electrons. The electron momentum equation is used to eliminate the electric field
term in the manner of the one-ion formulation, and the resultant expression for ion fluxes is
of the same general form as that obtained for one ion, permitting the same substitution into
the continuity equation and the same type of numerical solution. However, in three ways,

the expression is more complex than the one-ion case:

- ion density and electron density are no longer equal, and N;/N, terms appear in the

expression

- lon-ion interactions are included, and ion velocities become important to the solution

as the relative velocities between ions define the momentum transfer

2




- jon-ion couplings for the ith ion also include coupling of the jth ion with electrons,

owing to the electric field term in the momentum equation.

Thus, strictly speaking, the equation for ion flux is not linear in N;. On the other hand,
the higher order terms are generally small and can be arranged to appear only as modifiers
to collision frequencies. Rearranging the higher order terms determining these effective

collision frequencies are key steps in obtaining density solutions in the multipleion GTIM.

We have thus outlined an approach for deriving ion densities for each of a number
of different species. The ions required to define the ionosphere and plasmasphere are o+,
H* and Het, and solutions are sought for each ion in turn at each time step. Because
the ion densities are solved sequentially rather than simultaneously, much care is taken to
ensure that ions are not artificially created or destroyed as numerical artifacts. This involves

making adjustments to both production and loss rates and is best illustrated in an example.

Let us look at the OF-H™ charge exchange reaction and first consider the situation
at an altitude of around 300 km. The loss rate (3) for OF due to this charge exchange
amounts to typically 30% of the total O loss rate, and thus, when this reaction is included
in the calculations, model F-region O densities drop by around 30%. However, at these
low altitudes, no H* can be formed, owing to the rapid loss of H* through the reverse
reaction. In this situation, the answer is to modify the forward loss rate by a factor that
depends on the reverse loss rate (Bpgy) and the time step (AT). We say that the fraction
of O that can be lost out of the amount one is trying to lose is the same as the fraction of
H* that one is able to form over the time step, and that the rest charge exchanges rapidly

back to O*F. Specifically, this fraction is exp(-BrevAT).

At a higher altitude (say, 1500 km), O*-H* is primarily a source of OF. One derives a
production term (locally) for O that goes as x n(H™*) n(O) AT. However, this production
should not physically exceed the density of the available source terms (here H * and O,
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mostly the latter being the smaller term at high altitudes). To ensure this, producfion
rates are modified by a factor of exp(-x n(H*) AT to reflect the fraction of O that can
be lost over the time step. It should also be noted that because both n(O) and Brgv(H™)
are steeply varying functions of altitude, that the altitude profiles of these exp(-X AT)
terms are effectively step functions, and that the choice of how one averages these decay
terms over the time step (exp(-X AT) vs exp(-X AT/2), say) has no influence on the final

densities derived in the model.

2.2 Revising Model Drivers

As outlined above, each ion density can be derived from an expanded continuity
equation (using effective ion fluxes), that becomes a tridiagonal matrix when finite-
differenced. The coefficients that relate the adjacent terms in this matrix are dependent on
a number of factors. Some of these factors are those that define the physical environment
in which the ion density solutions are being derived, such as thermospheric densities and
winds, electron and ion temperatures, and vertical E x B drifts. In the GTIM formulation,
these physical quantities are not derived but are simply input, and are referred to as

physical drivers for the (ionospheric) model.

Two important drivers have undergone recent revisions, specifically to address the

issue of the higher altitudes being studied in the multiple ion GTIM.

First, vertical drifts have been generalized to include a variation with altitude. Most
commonly this takes the form of using input values (based on Jicamarca radar or AE
satellite observations) at low altitudes, tapering off above one input altitude to zero by
a second input altitude. An additional term in the continuity equation resulting from
the non-zero dV/dZ has been included. Furthermore, because this term can influence
ion densities at the 10% level, the altitude dependence has been made smooth in the first

derivative to avoid discontinuities in densities with altitude (runs at adjacent L-shells). A
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tanh-like dependence is used. The input altitudes that define the vertical dependence were

seen to vary with solar activity, and possibly other factors.

Next, the specification of electron and ion temperatures has been revised. Brace and
Theis (1981) provided a convenient tabulation of a summary of measured Te at several
altitudes (300 km, 400 km, 1400 km and 3000 km). At each location in the GTIM, a system
has been set up that provides a smooth fit with altitude to the Brace and Theis values at

that location, using a than-based functional form. The fit is further constrained by

- Te is set to the neutral temperature (from MSIS) at the fieldline base altitude

(125km)

- Te being monotonic increasing with altitude at any location (not the same as

monotonic increasing along the fieldline)

- Te being smoothly and slowly varying (larger rates of change lead to anomalously
high ion velocities in the model that in turn lead to large density gradients amd sometimes

numerical instabilities).

The second and third points mean that the fit will not necessarily pass through the Brace

and Theis values, but will instead be a smooth fit guided by those values.

At higher altitudes than 3000 km, it is not sufficient to simply set Te to the 3000
km value. In filling the plasmasphere, the model is basically diffusing light ions up both
hemispheres of a fluxtube until the pressure gradient term balances the gravity term (in
the momentum equation). A flat Te profile above 3000 km would mean that much larger
light ion densities are required at high altitudes to achieve this balance, and that the model
refilling time is very long (tens of days). Above 3000 km, we have included a simple linear
gradient in Te with altitude, and to avoid ion velocity related instabilities in the solution

from steep temperature gradients, there is an additional transition region above 3000 km

5




where the Te gradient changes linearly with altitude from the 3000 km value to the input

asymptotic value at a higher altitude (say, 4000 km).

The ion temperature, Ti, is derived from Te and Ty via a simple formulation of Banks
and Kockarts that ensures a match with Ty at low ionization fraction, and Te at higher

altitudes/fractions.

2.3 Testing Model Stability and Reliability

A couple of important issues regarding model stability and reliability have been

recently addressed.

The first issue arises from the higher order terms in Ni that appear in the multiple ion
momentum equation for the ith ion. There are different methods of rearranging the higher
order terms to make the expression apparently linear in Ni to facilitate the GTIM solution
for densities in the expanded continuity equation. Thus, it is important to show that the

derived densities do not depend on the method of rearranging used.

The second issue arises from the use of ion fluxes from the momentum equation in
the continuity equation, as it relies on collisions between species to define those fluxes. At
sufficiently high altitudes, collisions are too rare, and artificial neutral atoms are added
to achieve numerical stability. Thus, it is important to chronicle when these additional

neutrals are required, and when they start to influence the densities derived.

Figure 1 demonstrates results obtained for ion densities at the apex of the L=3
fieldline for equinox, solar moderaté conditions for a five day run. Each panel shows
densities of each ion (and electrons) at a particular local time as a function of the logarithm
of density of neutrals added. Flat lines thus indicate the desired insensitivity of the results
to this numerical artifact. Adjacent panels show the same results using different methods of
treating higher order terms in Ni, and the overall consistency of ion densities (to 10%

6
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Figure 1. Electron {dot-dashed line) and ion densities (H+ dotted, He™*
dashed, O™ too small to be seen) at the apex of the L=3 fieldline for equinox,
solar moderate conditions plotted as functions of the logarithm of density
of artificially added neutral species, demonstrating reasonable insensitivity
to that parameter. Panels side-by-side show the same results for different

methods of linearizing the equation of continuity. Rows of panels correspond
to results for 0200LT, 1000LT and 2200LT respectively, read from the top.




or so in this case) demonstrates insensitivity to the method. Other rows show the ;c,ame
behavior at other local times. The results are seen in Figure 1 to be encouraging at L=3.
However, by L=4 the sensitivity to both neutrals and method is much more substantial
(of the order of 50%), indicating that a different solution approach will be required at the

highest altitudes in the plasmasphere.

At lower altitudes, reasonable agreement with observed ion densities has been
obtained. Figures 2, 3 and 4 show comparisons of modeled profiles of O, H+ and He™
respectively, for selected local times against Arecibo ISR measured profiles from April
1995. In each panel, the different linestyles demonstrate the variations/uncertainties
in the observations, while the symbols show the model results for consecutive run days.
Overlapping symbols demonstrate convergence in the model densities, and qualitative and

quantitative agreement with the observations is quite reasonable to 2000 km.

3. MODELING STUDIES - WAVELIKE DISTURBANCES

In an earlier report (Fox et al., 1994), the means by which the Phillips Laboratory
GTIM at low latitudes was adapted to utilize vertical drift fields that include wavelike
perturbations was outlined. Some preliminary results were also presented that included
spurious effects at equatorial latitudes, whereby the wave-perturbed (or even default
climatological) vertical drift field will cause the lowest L shells to drift below modeled
altitudes and thus results could not be obtained for the complete period of a wave. More
recent studies have remedied this problem, and a more exhaustive series of model runs

under disturbed conditions has been conducted.

In the default configuration, the GTIM will terminate when an L-shell reaches a preset
minimum altitude (around L=1.026) as the plasma drifts downward. In essence, the method

currently employed is one that keeps track of how far below this minimum value the L
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Figure 2. A comparison of modeled GTIM O™ densities with
observed profiles from the Arecibo, Puerto Rico, ISR. The four panels show
comparisons at 1900LT, 2200LT, 0100LT and 0400LT. Observations are
indicated by 25 April 1995 as solid lines, 26 April as dotted lines and 27 April
as dashed lines. Overplots show radar observations made within 15 minutes.
Symbols denote model densities for a 4-day simulation (day 1=plus, day
=asterisk, day 3=diamond, day 4=triangle).
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Figure 3. As in Figure 2, but pertaining to HT densities. The
additional symbols, “G” demonstrate the results of the Gallagher empirical

plasmaspheric model.
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Figure 4. As in Figure 2, but pertaining to He' densities.
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shell is apparently drifting, while keeping it at the minimum value until it drifts sﬁfﬁciently
upward again to compensate. Equivalently, there is a lower boundary set to the vertical
dependence of vertical drifts, with a running measure taken for each fieldline to ensure that
no net drift over a wave period is obtained. Testing this approach using null waves (a wave
of zero amplitude) has proven successful, though there are numerical differences in densities
at the 5% level. This is considered to be the reliability of the method and only wave-related

effects of greater than this are regarded as significant in the model.

Subsequently, a series of model runs have been conducted appropriate to conditions
where a 16-day periodicity was observed in ionospheric data (Forbes and Leveroni, 1992).
Conditions were January, solar maximum (1979), US sector, and in the data some 20-30%
(peak-peak) variations were seen in noontime Nmax. The series of model runs were based
on several different onset-times for the wavelike variation in the vertical drift pattern, as
well as for two different amplitudes, 10% and 25% (20% and 50% peak-peak). It was noted
that for 16-day waves, the model results were not sensitive to the onset-time of the wave.
Also, the amplitude of the ionospheric effects were not linearly related to the amplitude of

the input disturbance.

Figure 5 shows one means of displaying the results. Here, the four panels show
variations in Nmax as a function of day in the wave for selected local times (0600LT,
1200LT, 1800LT and 2400LT). Each panel shows the results for a number of different
(magnetic) latitudes (-18=solid, -10=dotted, 0=dashed, 10=dot-dashed, 18=dot-dot-dot-
dashed). This wave had a peak-peak amplitude of 50%, and an onset time of 1300LT. The

following points are noted, both here and in general:
- the corresponding ionospheric responses are largely wavelike
- effects are largest at midnight

- equatorial effects in Nmax are opposite in phase to AE (equally, AH)
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- at local times where there is an anomaly crest, effects inside and outside the crests

are opposite in sign
- effects in Hmax are much smaller than those in Nmax.

It is seen that equatorial and anomaly effects are the largest. Looking at the noontime
Nmax variations in the second panel, it is seen that the amplitude of modeled variations is
only 15% rather than the 20-30% seen in the observations. Generally speaking, the modeled
variations are smaller. It is the movement of the anomaly crests in the code that gives rise
to the larger variations at evening and nighttime periods, and also highlights the variations

for noontime Nmax values at the equator.

We next extended the model comparisons to other low latitude ionospheric stations.
lIonospheric data (foF2) has been taken from several stations for the same January-April
1979 period originally studied by Forbes and Leveroni (1992). These additional stations are
Taipei (magnetic latitude +13), Maui (mag. lat. 20), Rarotonga (mag. lat. -20). Other low
latitude stations did not have sufficient data coverage to warrant periodogram analysis. At
each of these stations, we compared the amplitude of the observed periodicities at the same
4 Local Times (06, 12, 18, and 24LT) with the model predictions for a similar magnetic

latitude.

First, we compared the foF2 variations at Taipei with model results at +10 latitude.
Observationally, substantial periodicities are seen in the 18LT and 24LT foF2 values, with
significantly smaller variations seen at 12LT, and nothing at 06LT. The model predicts
larger variations at 24LT, and smaller at 18LT (albeit at a different longitude sector,
implying again that the background vertical drift pattern differs from that assumed in the
model, at least in the evening sector), with magnitudes close to those observed at 06LT and

12LT.

Next, we compare the similar results at £20 magnetic (Maui and Rarotonga) with the
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model results at +18 in the model. Observationally, amplitudes are smaller than af other
latitudes (at the other sites) and are only significant at 24LT. This is overall the sense of
the variations in the model, although again the model amplitudes predicted are significantly
larger. This implies that the crests of the equatorial anomaly are close to 18 magnetic in the
model, but are somewhat less in the data (Maui and Rarotonga are in the same longitude
sector, so this idea is reinforced); the amplitude of wave variations in the model drop very

rapidly outside the anomaly crests.

Overall, the model appears to give a good qualitative description of 16-day
periodicities in foF2, if one creates a wavelike disturbance along the lines of that proposed
by Forbes and Leveroni (1992). Quantitatively, the modeled variations are typically smaller
than those observed. Better quantitative agreement would be obtained in general by using
vertical drifts in the model obtained from actual measurements, obtained both before and

during the disturbance if possible.

4. INVESTIGATING IONOSPHERIC SATELLITE SIGNATURES

The goal of this project was to determine what may be deduced about the dayside
ionosphere, primarily the F2-layer peak, given only an in situ electron density measurement,
Ne(840). This would enhance the real-time ionospheric monitoring capabilities of the

DMSP satellite system.

A modeling study was undertaken using the Ot GTIM. Ideally, what is sought here is
a set of simple relationships that enable reliable estimates of Nmax and Hmax to be made
from Ne(840), over a variety of conditions. Important inputs to the model are the specified
diurnal variations of both the vertical ion drifts and the meridional neutral wind. In an
operational sense, there will be no additional information available on the particular levels
of drifts and winds on the day, and thus any proposed method must be made robust with
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respect to variations in both of these quantities. In general, the level of wind or drift is to be
inferred from the in situ density measurements. When either one of the wind or drift were
varied, it was evident that correlations existed between Ne(840) and Nmax (or Hmax) that

~ were a function of latitude, local time, season, and level of solar activity.

The important situation, however, is what type of correlations exist in the larger grid
of models where both neutral wind level and vertical drift level are varied independently. It
became apparent that in many cases, a single relationship existed for all levels, while in a
number of other cases, separate relationships were defined for each wind or drift; and in this

latter case, that therefore a means of estimating each of the wind or drift will be required.

The procedure for establishing a set of algorithms for deriving Nmax and Hmax
(and secondarily, effective wind and effective drift) was a highly interactive one, and was

performed as follows:

- for a given season, level of solar activity, and local time, plot Nmax (or Hmax) as a

function of Ne(840) at a range of latitudes (each plot covering all wind and drift levels)
- flag those latitudes where no knowledge of wind or drift level is required

- at other latitudes, determine whether separate relationships for either wind or drift

level, depending on which looks better to the eye

- determine a latitude where an estimate of wind or drift can be made purely from the
value of Ne(840) (specifically, at higher latitudes, vertical drifts have little influence, and
thus estimates of wind can be made- similarly at the equator, the vertical drifts dominate

and thus Ne(840) usually provides a guide to the effective drift level)

Such a set of coefficients, containing look-up tables for the course of action at each
latitude and local time has been developed. Testing of this first set of coefficients was made
by generating an additional grid of model GTIM runs, based on effective wind and drift
levels offset from those used to develop the coefficients. An error analysis has shown that
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the standard deviation of errors is around 5-20% in Nmax, and slightly less in Hméx. The
higher figures of standard deviations seem to arise from distributions with a few wildly
discrepant points. Ignoring outliers, the standard deviations are typically 5-10% in both
Nmax and Hmax. The outliers in turn appear to arise from poor estimates of effective wind
or drift, and thus it may be better to base estimates of these on Ne(840) values from more
than one latitude in each case. This is more physically sensible as winds and drifts act upon

the whole region and not just locally.

5. APPLICATION OF A NEW RAY-TRACING MODEL

A simple profile model was recently developed (Fox, 1994) that is based on the SLIM
model, described by Anderson et al. (1987), whereby the profiles derived in a theoretical
model at low latitudes were parametrized in terms of Chapman functions for each of the
topside and bottomside; Chapman representations in this context are not so much physical
descriptions as convenient mathematical descriptions of a basic ionospheric layer shape.
However, it differs from SLIM and purely Chapman-like layers in key ways. First, while
the topside and bottomside are also described by Chapman layers, the scale heights of the
layers are allowed to be height-dependent. This allowed for superior fits to the profiles in
the GTIM database. More importantly, the linear dependence with altitude gives rise to
analytic expressions for the topside and bottomside density, facilitating use in ray-tracing
applications. Second, the nature of the profile fit is that a match is achieved to known
values of peak density, peak height and, in terms of summarizing the profile as a whole, slab
thickness. The match is achieved by allowing the parameters describing the height variation
of the internal scale heights to vary until simultaneous agreement to the peak and summary

profile parameters is reached.

The general problem in radiowave propagation is to be able to predict how various
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frequencies of waves will propagate for a given circuit under given conditions. An §perator
in the field will want to know which frequencies will work for each circuit and at what
elevation angles. Systems already exist that can provide estimates based on climatology but
it may not be clear to the operator how any additional real-time observations may be used

to help.

For the purposes of ray-tracing through this model we first define the circuit by the
transmitter location, receiver location, UT, month and solar flux. In the first instance, we
then use the SIMPLI model to come up with climatological profiles for a number (currently,
11) of locations along the circuit. Then, a two-dimensional ray-tracing model is used
to determine propagation through this model ionosphere. The propagation is specified
by the electron density profiles and their first derivatives, both of which are analytic
expressions in the SIMPLI formalism. The profile parameters specified along the circuit
are then polynomial fit as a function of ground-distance from the transmitter, so that at
any arbitrary distance between the transmitter and receiver, the electron density profile
and its slope can be regenerated analytically, as is required for raytracing. Next, over each
frequency in the range being considered, the elevation angle required to reach the receiver
was determined. Plots of elevation angle versus frequency are the basis for the comparisons

presented here.

In the second instance, we wish to set up a method whereby the ionospheric
description is updated by some real-time data relevant to the circuit. In the absence of an
observational database, the method was tested by using model-driven data, but from an
independent model. Here, the Bent model was used, and was run for the same conditions
that apply to the given circuit, over the same number of points along the circuit. The “fully
updated” model over which ray-tracing is performed is taken from SIMPLI model profile fits
to the Bent profiles at the locations along the circuit. This locus of elevation angle versus
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frequency defines the ultimate solution (if the ionosphere were completely or correctly
specified). Note both the different elevation angles in the true case, as well as the greater

range of usable frequencies. It is important to be able to track changes of this nature.

What is being tested here is the ability of the SIMPLI model to assimilate a small
amount of data about the circuit and to successfully update radiowave propagation
predictions accordingly. The means of testing is to compare the elevation angle loci of
different ionospheres where each has resulted from a SIMPLI description using different

amounts of “real” (in this case, from the Bent model) data.

Let us demonstrate this concept with an example. Imagine that only the Nmax value
at the circuit midpoint is known. Then, the other 10 points along the circuit will have
electron density profiles defined by climatological SIMPLI predictions. The midpoint (point
6 out of the 11) will have SIMPLI estimates for the other 6 profile parameters, and the
“true” Nmax. Thus, along the circuit, the other 6 parameters will have the same variation
as before versus ground distance, while Nmax will have 10 points along the previous curve,

and the middle point offset. Two methods of updating the fit of Nmax vs x are:

- performing the same polynomial fit as before through the 10 original and 1 updated
points (fitting)
- fitting the 10 points with a polynomial, but offsetting (changing the zeroeth order

term) to pass through the midpoint value (shifting).

Successively, the same tests were performed when other parameters (Hmax and slab
thickness) and/or specified at other locations (along the circuit) are known. This
determined how much data is required for the SIMPLI ray-tracing model to adequately
revise its propagation predictions.

We illustrate typical results with the circuit Tx=(30,30), Rx=(20,20), June,

F10.7=150, 1200UT, presented in Figure 6. The solid line is the initial guess from SIMPLI
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Figure 6. The SIMPLI profile model used in raytracing. The solid
line shows elevation angle versus frequency obtained from climatological
estimates (electron density contours in the left insert). The dotted line shows
predictions made from the “ground-truth” ionosphere (right insert). The
upper three lines show predictions based on updating Nmax at the circuit
mid-point and end-points when SIMPLI parameters along the path are shifted
only in the zeroeth order. The lines lying nearest to the dgotted line are made
when SIMPLI Nmax values are refit along the path.
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for the locus of elevation angle versus frequency for the circuit, based on the ionosﬁhere
seen in the left contour plot included in the figure. The dashed line is the locus from the
“actual” ionosphere (from the Bent model), seen in the right contour plot, and clearly
very different to the SIMPLI climatology in this case. Also seen in this figure are two sets
of three different lines, where the thinner lines are derived from the shifting method of
updates, and the thicker lines from the fitting method, and where the data used is Nmax
from the midpoint (dashed), ends of the circuit (dot-dashed) and all of the above (dot-dot-
dot-dashed). In this case, the fitting method is seen to give a fairly good update for the
ray propagation, even when only Nmax at the midpoint is known. Using other information
(such as Hmax or slab thickness anywhere) did not make any substantive difference- Nmax
is sufficient.

This same type of test was peformed over a variety of one-hop circuits over a variety of
conditions. In general, the fitting technique provided the more reliable means of updating
the SIMPLI model for ray-tracing applications and overall, good results can be achieved
when only Nmax at the circuit midpoint is available as an update. Nmax available at either
the transmitter or receiver location also provides sufficient information to substantially

improve propagation predictions.
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6. NEUTRAL DENSITY ANALYSIS

This reporting period has concentrated on the delineation and interpretation of
longitudinal structures in the SETA data. These include the ”longitude/UT” effect and

"longitudinal wave structures”, which are discussed separately below.

6.1 Longitude/UT Variation

The existence of a "longitude/UT” effect in the MSIS series of empirical models,
which numerically describes the geomagnetic control of high-latitude thermospheric
density, suggests that we examine the SETA data for such variations. Since the MSIS
models suffer from sparse data coverage at low orbital altitudes and high solar activity, this
comparison should be valuable in ascertaining the inadequacies of empirical models under
these conditions. This comparison has been a major focus of this year’s neutral density

contractual activities.

Figure 7 illustrates the time variation of SETA densities, normalized to 200 km and
averaged between 20 and 40 degrees latitude, during July 21-26, 1983. MSISE90 density
values were calculated for each SETA data point, and averaged in an identical fashion;
these values are shown by the dotted line. Note that both the data and model exhibit
a repeatable cycle with period of 24 hours or 360 degrees longitude; it is this variation
which we refer to as the longitude/UT effect. Note that there is the appearance of the
longitude/UT ”amplitude” increasing with magnetic activity (a magnetic storm occurred

on July 24).

For the present study, we primarily confine ourselves to the magnetically quiet periods
during July 20-24, 1983, and December 4-10, 1983. All comparisons between MSIS and
SETA correspond to SETA densities normalized to 200 km with the longitude/UT effect
removed from the MSIS model. Variations in SETA data which we compare with MSISE90
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Figure 7. Comparison of SETA and MSISEQ0 density variations
averaged over 20-20 degrees latitude at 1030 LT during July 20-26, 1983.
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were extracted as follows. First, the long-term trend was established by performiné al7-
orbit running mean. The residuals from this mean were then smoothed (5-orbit running
mean) to remove the short-term variations. The result of this process is indicated in Figure
8 for dayside (1030 LT) data averaged over the 0-10° latitude range. The solid line in Figure
8 represents the least-squares fit of a sinusoid with a period of 24 hours (360° in longitude)
to the SETA density residuals (circles). The dashed curve represents the corresponding
MSISE90 prediction for this period. Note that the amplitude is given in terms of percent
variation about the mean density. Figure 8 reveals a distinct periodicity in both the SETA
data and MSIS which we are referring to here as the *longitude/UT” effect, although
longitude and UT variations cannot be separated or distinguished from the sun-synchronous
SETA orbit. The MSIS model exhibits a slightly smaller amplitude and a slight shift in

phase with respect to the SETA density oscillation.

Figure 9 summarizes results from the above procedure for all available latitudes for
the daytime data during this period. Amplitudes are calculated (a) taking into account the
magnetically-active period, and (b) considering only the quiet days. The major model/data
discrepancy to be gleaned from this plot is the signficiant latitudinal asymmetry depicted by
the SETA data — a factor of 2 to 3 enhancement of the oscillation in the S. Hemisphere; on

the other hand, the MSIS model is symmetric about the equator.

An alternative form of depiction is presented in Figures 10 and 11. Here, we provide
grey-scale plots of the density comparisons which also take into account the phase
(i.e., longitude of maximum) of the "longitude/UT” oscillation. Only the magnetically
undisturbed data are used in the fits. These plots also provide comparisons for the
nighttime data for the July period, and daytime data for the December period. For the
daytime data during July (left-hand panels in Figure 10), SETA and MSIS compare well in
phase (i.e., longitude of maximum), but the SETA data suggest the phenomenon to be

24




y
Y
[$)]

—
o
T

[$2)
T

(=]
T

}
n
T

t
—r
o

Y

Percentage of Quiet Period Mean Densit

21 215 22 225 23 235 24
Day in July, 1983

I
e
p’”
(8}

Figure 8. Comparison of "longitude/UT” variation in SETA densities

(circles) with MSISE90 (dotted line) during the magnetically quiet period of
July 21-23, 1983. Solid line represents least-squares fit of sinusoid to SETA

data.

25




July 1983, Daytime Residual Ampiitudes

25 T T 1 L )
+__ SETA Quiet

. Xeorerrisiox x: SETAAll Data
o — MSIS Quiet

* - MSIS All Data

Percentage ol Qulet Perlod Mean Density

il

O 1 )
-80 -5§0 ~-40 -20 Q 20 40 60
Geomagnetic Latitude (binned by +/- 10 degrees)

Figure 9. Comparison of amplitudes of "longitude/UT” variation
between SETA and MSISE90 as a function of latitude, for daytime data

during July 21-23, 1983.

26




ic Latitude

Geomagnet

Geomagnetic Latitude

(&)

1C
<

)
n
L

-&0 ~-130 -100 -B0 0 50 100 150 ~180 -100 B0 0 50 100 150

Geomagnetic Longitude Geomagnetic Longitude

Figure 10. Longitude/UT dependence as revealed by SETA (top) and
MSISEQ0 (bottom) total mass densities at 200 km during July 21-23, 1983.
Left: daytime (~1030 LT). Right: nighttime (~2230 LT).

27




&
E 05
= 0
L
g 5
<
o]
£ -t
5-20
8 5
_4, —2
-89 5 00 %0 150 -100 -50 O 50 100
-150 -100 -850 0 8 10 180 S .
b Geomagnetic Longitude Geomagnetic Longitude

Figure 11. Longitude/UT dependence as revealed in SETA (left) and

MSISE90 (right) daytime (21030 LT) total mass densities at 200 km during
December 5-10, 1983.

28

150




much more robust in the Southern Hemisphere as compared with MSIS. The right-hand
panels illustrate the same results, except for nighttime (approx 2230 LT). Here, the converse
is true: SETA is more symmetric about the equator, and MSIS is more asymmetric, with
much larger perturbations in the Northern Hemisphere. Figure 10 illustrates similar
comparisons for daytime data during December 1983, illustrating a very interesting 180
degree shift (for both MSIS and SETA) in the phase (longitude of maximum) of the
phenomenon, as compared to the July period. Physical mechanisms underlying the above

behaviors, including the seasonal phase shift, are not understood at the present time.

The main conclusion to be drawn from these comparisons is: There exist significant
seasonal/latitudinal differences, in amplitude and phase, between large-scale
longitudinal structures revealed by SETA data in comparison to the MSISE90
model during magnetically undisturbed periods; these differences should
be incorporated in future empirical modelling efforts in order to improve

specifications of thermospheric density for various Air Force applications.

6.2 Longitudinal Wave Structures

Given the above large-scale trends in the longitude structure of thermospheric density,
subsequent efforts have focused on analysis and interpretation of the ”residual density
variations” superimposed on the large-scale structure. Samples of these residual structures
for daytime data during July 20-24, 1983 and December 5-10, 1983, are provided in Figure
12. It is evident that there exist band-like structures extending in the north-south direction.

The following describes our efforts to characterize these features quantitatively.

The main difficulty faced in analyzing and interpreting these features is with the
space-time sampling inherent from a satellite. The SETA satellites are in sun-synchronous

orbits, which means that local time is fixed and the satellite track is nearly at an angle
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of 90° with respect to the equator (actually, the angle is about 83°). The earth (aﬁd
atmosphere) is thus rotating below the satellite at an approximate rate of 360° longitude
per day. Thus, time and longitude are varying continuously, and it is therefore difficult
to separate longitude variations from time variations in the atmospheric density. This is
especially the case when wave features may in principle be propagating eastward and/or
westward with respect to the surface of the earth, as we well know that case to be in the
troposphere and stratosphere. Spectral analysis of the data, therefore, leads to some

ambiguity in interpretation. The difficulty may be summarized through the relationship

ks=mx1/T

where k; is the zonal wavenumber viewed from the frame of the satellite, m and T are the
earth-fixed zonal wavenumber (integer) and period (in days) for a particular oscillation,
and the negative (positive) sign corresponds to westward (eastward) propagation. ks need
not be an integer. So, if k, is found to be 1.33, for instance, from straightforward spectral
analysis of the data, this could be interpreted as a westward-propagating m=2 oscillation
with T=1.5 days, or an eastward traveling wave with m=1 and T=3 days. Other higher-
order combinations are in theory possible, and often it is necessary to either live with the

ambiguity, or to deduce the physically correct answer by imposing other constraints.

The most prominent value of ks derived from spectral analyses of the SETA at
different latitudes was a value of 4, with secondary peaks often occurring at 2, 3, 1, and 5.
A superposition of spectra for the various latitude bands in the N. Hemisphere for the July
daytime data (cf. Figure 12) is illustrated in Figure 13. For ks = 2, for instance, we have as
the lowest-order mathematically plausible waves (m, T') = (0, 1/2), (2,00), (1,-1). The first
corresponds to a zonally-symmetric semidiurnal tide; the second to a quasi-stationary (i.e.,
earth-fixed) wave of s=2; the third to an eastward propagating diurnal tide with s=1.
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We eliminate from consideration (m,T) = (1, 1) since this represents a migrating diurna.l
tide which cannot be detected from a single fixed-local time measurement (in other words,
it does not meet the Nyquist criterion). The only plausible choice appears to be the quasi-
stationary wave. For ks = 4, we have (m,T) = (4, 00), (0, 1/4), (5,-1), etc. Again, the
migrating semidiurnal tide (2, 1/2) is eliminated from consideration, and there are no
known reasons to expect an eastward-propagating wave or a zonally-symmetric 6-hour tide.
Our tentative conclusion is that the structures seen in Figure 12, at least those consistent
with apparent zonal wavenumbers of 4, 2, 3, 5, and 1 in Figure 13, correspond to earth-fixed
features. It is noteworthy that the most prominent wavenumber, s = 4, also corresponds

to the most prominent wavenumber in the decomposition of land-sea surfaces. This may
suggest some relationship with lower-atmosphere physical processes.. The thermospheric

density amplitude variations associated with these features are about +2-4%.

We are led to the following conclusion: Longitudinal wave structures of
order +2-4% exist in thermospheric density, with apparent earth-fixed zonal
wavenumbers ranging between 1 and 5. Zonal wavenumber 4 appears to play an
important role. Analyses of additional geophysical periods, perhaps using more
sophisticated spectral analyses techniques, may lead to improved quantification

and interpretation of this phenomenon.
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